
 

Node behavior plays an important role in network 

performance of mobile and wireless networks. In dynamic 

networks such as mobile ad hoc networks (MANETs), node 

changes its behavior from behave to misbehave unavoidably 

which may threaten the correct functioning of nodes. These 

change of behavior directly affects the connectivity and 

availability of the network [1–3]. Furthermore, misbehave 

node also affect route discovery by giving fake route 

information, packets forwarding, and network control message 

[4–6] which temper network survivability. 

 In real network scenarios, node behavior shows temporal 

dependent sequence of event known as correlated behavior 

resulted from neighboring node activities during routing 

process. Node may trigger correlated event if the behavior has 

the capability to influence others such that when a node failed, 

neighboring node may need to load more traffic originally 

forwarded by those failed node, and might become failed 

faster due to excessive energy consumption. Similarly, it is 

also possible that the more malicious neighbors a node has, the 

more likely the node will be compromised by its malicious 

neighbors. Eventually, misbehave node leads to node failures. 

When failures occur, the network suffers from degraded 

performance because of the unavailability of the failed nodes. 

The subsequent impact of this correlated event could range 

from insignificant topological survivability to devastating 

network shutdown.  

In order to deal better with network survivability and 

provide some guidance for building survivable network in 

MANETs, there is an urgent need to study the correlated node 

behavior and identify which factors will influence the 

spreading behavior. Node correlated behavior can be modeled 

as spread of epidemic through ad hoc network. However, 

traditional epidemic models cannot be applied to ad hoc 

environment because they only consider the static network 

topology, but the dynamic effects of node behavior such as 

mobility are not modeled. Thus, correlated node behavior is 

also modeled based on viewing dynamic behavior of node 

using Semi Markov process to define node stochastic 

behavior. The new metrics to measure connectivity 

dependents behavior known as correlated degree is introduced 

in the model. Correlated degree can be an indicator on how 

well the network is connected to the network under correlated 

behavior situation. With correlated degree, the model is able to 

predict the evolution of correlated behavior and when the 

spreading becomes an outbreak.  The layout of this paper is as 

follows. Section II describes related works and Section III 

explain the behavior of correlated node in MANETs. In 

Section IV, the paper proposed correlated node behavior 

model and the model simulation and validation is discussed by 

experimenting two scenarios of correlated events in section V. 

Section VI will conclude the paper. 

 

There are several papers discussing correlated node effects 

in various contexts. In [7] a framework is presented to model 

correlated effects caused by disasters on networks; 

nonetheless, the model is limited to bipartite networks and 

vertical regional disasters. Another work discusses availability 

of storage systems in the presence of independent and 

correlated failures [8]; where correlated failures are modeled 

based on datasets using conditional probabilities and the beta-

binomial model. A tunable failure correlation model is 

reported in [9] that allows different correlation levels in 

failures based on the traces. In [10], the reliability of a grid-

computing system is evaluated considering the failure 

correlation of different subtasks executed by the grid; 

component failures are assumed independent, however. 

Moreover, a framework for modeling software reliability 
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based on Markov renewal processes has been reported in [11] 

and [12] that is capable of incorporating the possible 

dependencies among successive software runs. None of the 

works above discuss the propagation of the correlated 

behavior such as node failures and their effects on 

survivability. In this work, we take epidemic model as a basis 

of node propagation to show node’s correlated behavior. The 

works [13] and [14] are relevant to this work as they 

characterizes the spread of correlated failure due to misbehave 

nodes. While these papers consider both independent and 

correlated behavior and their effects on network connectivity, 

however, they do not provide a systematic stochastic approach 

to model correlated node behavior to evaluate spreading rate 

of correlated behavior.  

In order to model the correlated behavior of mobile node, 

the characteristic of node behavior is describe first and 

epidemic spreading on mobile node is derived. Then 

parameters which influence the spread speed of the epidemics 

are studied.  

 

To understand how nodes are correlated in ad hoc network, 

the characteristic of dynamic node behavior and its state 

transition is discussed in which it will be used to quantify 

correlated event in epidemic theory. Unlike node behavior 

describes in similar work on mobile epidemic, node behavior 

describe in this paper focus on its activity in routing process 

such as packet forwarding, energy consumption and 

transmission radio. Based on its routing activity, node 

behavior is characterized as cooperative, selfish, malicious and 

fail node. Table 1 shows node behavior and its characteristic. 
  

TABLE I: NODE BEHAVIORS AND ITS CHARACTERISTIC 

 

 

Node dynamically and arbitrarily changes its behavior. For 

example cooperative node (c) is exposed to change its state 

behavior to either selfish, malicious or fail state. This may 

happened due to energy exhaustion, misconfiguration, being 

compromised, power depletion or out of transmission 

(Sundararajan, Shanmugam, 2010). However, it is also 

possible to convert node operating at selfish state to be 

cooperative again by means of proper configurations. On the 

other hand, once node is at malicious (m) state, it only can 

become a failed node (f), and it will not be considered to be 

cooperative or selfish any more even if its disruptive behaviors 

are intermittent only. A failed node (f) can become 

cooperative again if it is recovered and responds to routing 

operations. Fig. 1 specified node behavior state transition 

diagram.  

 

 
 

Fig. 1: Node Behavior Transition 

 

 

When correlated event is attempted in ad hoc network, the 

epidemics may spread through the following ways: 

 

• Endogenous – The event caused by the node itself 

with some probability at every time step. This is also 

the initial start of correlated event when node 

changes from cooperative behavior to either selfish, 

malicious or fail node due to factors described above. 

 

• Exogenous – The event is graph-based transition 

affected only by the neighbors of the infected nodes. 

For example, node may trigger correlated event if the 

behavior has the capability to influence others such 

that when a node failed, neighboring node may need 

to load more traffic originally forwarded by those 

failed node, and might become failed faster due to 

excessive energy consumption. 

 

 
Fig. 2(a) Selfish node (b) malicious node (c) fail node 

 

Fig. 4.2(a) (b) (c) illustrated how initial node could start 

the correlated event in ad hoc network. The correlated events 

influences by many factors. It is mostly determined by the 

current status of neighboring nodes. The most influential 

factors of node status are packet ratio, energy resources, and 

mobility. Example of energy factor is when node operating at 

selfish state, its residual energy drops below threshold level. 

Behavior Characteristic 

Cooperative (c) Active in route discovery and packet 

forwarding, but not in launching 
attacks. 

Selfish (s) Active in route discovery, but not in 

packet forwarding. They tend to 

drop data packets of others to save 

their energy so that they could 

transmit more of their own packets 

and also to reduce the latency of 
their packets. 

Malicious (m) Active both in route discovery and 
launching attacks. 

Fail (f) Not active in route discovery. 

3. Correlated Node Behavior 

3.1. Node Behavior 3.2. Correlated Even 
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Then, it will drop all the forwarding packets and disconnected 

or become failed node. This behavior resulted from its own 

self activity (endogenous), thus it has a capability to create 

correlated event by infecting neighboring nodes (exogenous). 

Fig. 2(a) illustrates an example of correlated event triggered 

by selfish node s1. In this case, s1  behaves like a fail node 

because selfish node drop all packets routing and cause the 

path that uses this node has to be rerouted and its load has to 

be redistributed to the neighboring nodes. The redistribution of 

the load may increase energy consumption due to packets 

overload [17]. After node S1 refuse to forward the packets, 

node 1 who initiates a route discovery to node 4, has to go 

through via node 2 and 3 which takes longer route than before. 

Furthermore, node 2 also has to route the packets from node 7 

which gives extra burden to node 2. This consequence will 

lead to extra energy consumption and node may fail faster. If 

node 2 failed, all nodes in the transmission range unable to 

establish any communications with other nodes at a distance 

of more than one-hope away.  

An example of malicious node is an increase of packets 

ratio (DoS attack) as illustrated in Fig. 2(b).  In this example, 

the initial attack occurs at node  . Node  is a malicious 

node in which it injects a huge number of junk packets into an 

ad hoc network because it has been compromised or it 

intentionally does it, with a goal to depleting the energy of the 

node that relay the packets. Once it infected, the malicious 

node will impersonate neighboring node by forwarding high 

volume of packets.  In Fig. 4.2(b), resulted from packet 

injection from node  , then node 2, 3, 4 and 5 will suffer 

from congestion packets forwarded by node . To be able 

for node  to extend the correlated behavior to the next hop, 

node 5, which reacts as an intermediate node to hop may 

exhaust the wireless bandwidth before overloading the node in 

the next hop. Even though neighboring nodes will not forward 

junk packets injected by malicious node, they will have to 

spend some energy resources on verifying these packets. 

The loss packets resulted in fail node [18]. It can be due to 

battery depletion or mobility factors. Both factors give the 

same effect to topology changes. In most cases, selfish and 

malicious node dies out and removes from the network. The 

failed node has the same effect as selfish node as illustrated in 

Fig. 2(c). 

In this section, a comprehensive model of correlated node 

behavior in MANETs is described which consider the 

influence of various factors mentioned in Section III. For 

convenience, the basic model of node behavior using Semi-

Markov process to characterize node behavior transitions is 

described first. The model is important to describe the 

endogenous factors that initiated the correlated event. Next, 

using SIR (susceptible-infective-removed) epidemic model, 

the correlated event is derived to show correlated behavior of 

node in MANETs. 

Based on node behavior describe above, Semi-Markov 

process is used to model stochastic node behavior transitions 

and analyzed the stochastic properties of correlated node 

behavior in epidemic theory. State space is defined as 

 and model node behavior transition by a stochastic process 

 associated with space . The semi-Markov process 

denoted by: 

 

              (1)                                         

                         

In equation (1)  refers to the current state process, and 

 denotes the embedded Markov chain of  which 

has a finite state space ,  and the nth state visited [19]. Thus, 

By Collolary 9-11 (pp 325) in [5] it is known that  is 

irreducible and  is the state of process at its most recent 

transition . The transition probability from state  to state   is 

defined as follows:     

                

 

                                    (2)                                  

 

Based on assumption discuss above, the transition probability 

matrix (TPM)   of  is given by 

 

                           (3)                                                 

 

where  means that it is not possible to make transition 

between the two states based on the rules specify in  Section 

III.  Since it is a stochastic matrix, the summation of transition 

probabilities to a state must be equal to 1. Node behavior is 

also time dependent, thus the time spend from state  to  is 

determined as cumulative distribution function (CDF) of 

sojourn time  for . Then, transition time 

distribution matrix  is given by: 

 

             (4) 

 

The state transition diagram of semi Markov node behavior 

model is shown in Error! Reference source not found.3.  

 

 

4. The Model 

4.1. Stochastic Property of Endegenous Node Behavior 
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Fig. 3 Semi-Markov Processes for Node Behavior 

Error! Reference source not found. 3 explain that at each 

discrete time step, node u changes its state based on the 

following probability: 

 

A=probability of dropping  � transition from state c to s 

B=probability of forwarding � transition from s to c and f to c 

C= probability of injecting � transition from c to m 

D= probability of loss � transition from c to f, m to f and s to f 

 

The steady-state transition probability distribution  can then 

be derived by solving the following set of equations: 

 

, , 

 

                         (5)             

 

 

Given the fraction of time   that the node stays in each state 

and the sojourn times  for each state, it is easy to 

calculate , the status of the node staying in transmission 

radius r as: 

                 (6) 

 

In this section, SIR is used to model correlated event of 

node behavior in MANETs. Correlated event can me 

mathematically describe as a time-dependent point process of 

, where  follow consecutive action at  and  . 

The concept of disease infection in epidemic theory using 

susceptible-infection-removed (SIR) is used to identify 

correlated node behavior in MANETs. Consider population of 

nodes N in MANETs will be in either one of three correlated 

events: susceptible (S), infection (I) or removed (R). In this 

context “removed” means fail node and no longer active in the 

network. It is also assumed that, once nodes enter removed 

events, it will not consider being in the network again. 

Traditional SIR model, such as Kermack-McKendrick 

model [20], does not consider the uniqueness of dynamic 

behavior in mobile nodes. Thus, SIR model is modified to fit 

the characteristic of node behavior in MANETs such as energy 

consumption and node mobility. These characteristics have 

caused the main implication to node behavior transition and 

triggered correlated event. Thus, SIR rate is uses to denote 

susceptible rate  , infection rate   and , if correlated 

event are resulted from selfish and malicious node 

respectively. On the other hand,  and  are used to denote 

remove event either fail due to selfish behavior or malicious 

node. The Events in SIR follow the current state of node 

behavior which is determined by equation (6). Then, SIR rate 

is derived within adjacent nodes in ad hoc network. Two 

nodes have a link if they are within transmission range r. 

Neighborhood of node  , denoted by  , is a subset of such 

that every node in this subset has an edge from node  to node 

, i.e., . Consider undirected and weighted 

networks, in which case the adjacency matrix is symmetric 

with elements  where weight function  

represent SIR rate of adjacent node u. SIR rate are derived as: 

 

  
                                                            

                               (7)                                    

  
                                                                

Adjacent matrix of node u can be subsequently computed by 

constructing correlated transmission matrix (CTM) using 

equation (3-4). In order to formulating correlated transmission 

matrix, let u and v are two nodes connected in a network. The 

corresponding CTM for node u and node v are given below: 

          

   

(8) 

 

 

Then, let { , , , , } be a weighted function 

indicates the SIR rate of node behaviors. Denote  the 

probability of being in steady state. If the state space is finite, 

then the equation in (5) can be solve to obtain . The status 

of a node at current t time is given by equation (6). Let 

 , CTM is s constructed as: 

 

  and 

(9) 

4.2. SIR-Epidemic Model 

WSEAS TRANSACTIONS on SYSTEMS A.H Azni, Rabiah Ahmad, Zul Azri Mohamad Noh

E-ISSN: 2224-2678 238 Volume 18, 2019



 

 

Then correlated degree of adjacent node u within transmission 

radius r is obtained: 

 

                         (10) 

 

Let  and  denote the number of 

nodes in susceptible, infection (selfish and malicious) and 

removed events at time  respectively. Assume that the total 

node population is constant , such that 

 for all . The infective 

nodes contact with d node degree and weight function 

. Then, the basic differential equations that describe 

the rate of change of SIR rates are given by  

 

 

 

 

 

          

       (11)                             

  

               

        

                                   

 

Equation (11) is specially derived to take into account the 

change of rate of correlated node rather than individual node 

as in previous SIR model. Thus, correlated event can predict 

the spreading behavior of correlated node in MANETs. 
 

To evaluate the correctness of correlated node behavior 

model, an exhaustive simulations in the simulation tool ns2 

(v2.35) and series of numerical experiments in MATLAB 

(7.10a) were conducted. In simulation, all network parameters 

are set to the default value given in TABLE2 below. 

 
TABLE II.  THE NETWORK SIMULATION SET UP 

 

Considering MANETs environment with 100 nodes 

randomly distributed in a 1000 m x 1000 m area, each node is 

free to move following random waypoint mobility model with 

an average speed 4 m/s and has a 200m transmission range r. 

IEEE 802.11 is used for medium access control and AODV is 

used as the routing protocol. The time step used is 300 

minutes to simulate the scenario. In simulations, nodes change 

their behaviors according to the energy resources available for 

their own use and forwarding packet ratio. To simulate 

infection event for selfish, malicious and failed nodes, a 

modified version of AODV was developed so that their 

behaviors do not comply with the routing and forwarding rules 

defined in the standard. In order to calculate the correlated 

degree, neighborhood statistics of each node per 10 seconds 

were collected, including the number of neighbors and 

behavior of each neighbor. The model study the correlated 

node behavior without the effect of defends mechanism which 

means once infected by directly or indirectly, the node will not 

be repaired or removed. It remains in the infective state until it 

dies out.  With this information, the number of susceptible 

infected and remove node from the network can be obtained.  

 

Correlated event is determined by the current status of 

node. At time t node status  is determine using equation (6).  

To calculate , TPM from semi Markov node 

behavior model is obtained using data collected from 

simulations.  

 

 

 

The steady state is  

 
 

 

Then,  can be calculated using equation (5). Since  

are known already,  are calculated as:  

 
 

 

Last, the value of  is obtained using equation (6), 

 

Parameter Setting 

Simulation area 1000 m x 1000 m 

Transmission range 200 meter 

Mobility model Random Way Point 

Movement features Avg. speed 2 m/s/ pause time 

1 s 

Initial Energy 100 Ws 

Link capacity 11 Mbps 

Traffic load 100 connections, 8 packet 

per sec 

Simulation time 300 minutes 

 

5. Perfomance Evaluation 

5.1. Simulation Setup 

5.2. Correlated Node Behavior Analysis 
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Fig..4: Susceptible Event 

 

From , it is shown that the node status is highly in 

cooperative state with probability of 68%. For each adjacent 

node u, the status is obtained the same method to get . Let 

use Fig. 4 as an example of node topology in transmission 

radius r. At time t=(0), all nodes are in cooperative state. 

Using SIR mapping in equation (9), CTM and  is obtained 

for all adjacent nodes u. Adjacent node u is in cooperative 

state, then using equation (10), correlated degree is 

. 

 

    and    

 

 

     According to connectivity theory in ad hoc network [21] 

high connectivity means low isolation and high accessibility, 

whereas low connectivity resulted in high isolation and low 

accessibility. Thus, this shows that the nodes  is connected 

with high rate of cooperative node in transmission r. 

Following theory of connectivity in transportation system 

[22], the value reflected that node  is a central of routing 

activity. This is also true as node  connected to all nodes in 

transmission r. Another observation is that, node  and  

shows the weakest link in the network with . This is 

because, the chances of node changes it state to selfish or 

failed state is higher compared to other adjacent nodes.  

 

 
Fig. 5: Infection (Selfish) event 

 

To see the effect of selfish node, at time t=(0), node  as 

in Fig. 5 is set as selfish node and the simulation were run 

again to get the value of . The same process were derived to 

obtain CTM and  as in susceptible event. The correlated 

degree due to selfish node is . Then, the change 

of rate from susceptible event to infection (selfish) event is 

. The effect is quite noticeable as node  is a central of 

routing activity and all the packets connecting to  have to 

reroute to adjacent node. It can also be seen that, node  and 

 might get affected first from selfish behavior as  is low. 

It is worth to point out that, after node  become selfish, node 

 is a critical node as the node becomes the central activity of 

node in transmission r and also act as a gateway to next 

cluster. The selfish infection cause by node  decrease its 

correlated degree by . In the next experiment using the 

same topology graph, malicious node is set at node . From 

CTM and , correlated degree due to malicious node is 

 and change of rate from susceptible to infection 

(malicious)  is . Compare to selfish node, malicious node 

experiencing fast infection time once it gets infected.   

Fig. 6 and Fig. 7 depicted the trend that the number of 

nodes in different events changes with time. From the figures., 

the result shows that the number of infectious nodes rapidly 

increases at initial spreading then quickly decrease as the node 

fail or removed. However, number of susceptible nodes keeps 

decreasing since the node did not consider being in 

cooperative again after being removed. Notice that, malicious 

node stay longer in the network compared to selfish node and 

it keep launching an attack until it dies out. It can be 

concluded that correlated malicious node impact network 

connectivity severely. 
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Fig. 6 Selfish Event with  ,  and  

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

time

N
u
m
b
e
r 
o
f 
N
o
d
e
s

 

 

S

I

R

 
Fig. 7 Malicious Event  and  

 

The simulation were conducted three times by d=2, d=3 

and d=5, respectively. The simulation result are shown in Fig. 

8 for selfish node and Fig. 9 for malicous node. Both scenario 

shows the same pattern that the bigger the value of d, the 

earlier the beginning time of the fast spread of correlated node 

behavior is. Additionally, the bigger d is, the bigger the 

maximal number of infected nodes is. 
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Fig. 8 Selfish node  ,   vs. d 

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

times (minutes)

N
u
m
b
e
r 
o
f 
N
o
d
e
s
 (
N
)

 

 

d=5

d=3

d=2

 
Fig. 9: Malicious Node  vs. d 

 

 

b) Mobility 

To evaluate the impact of node mobility on correlated 

degree, the simulation conducted using two different speeds: 

20 m/s and 2 m/s with random-waypoint mobility model. 

Simulation result for both infection events (selfish and 

malicious) are shown in Fig. 10. The mobility of nodes does 

affect correlated degree considerably as it directly increase the 

energy consumption as well as dropping ratio which affect the 

value of . The higher the mobility is, the lower the value of 

correlated degree in which increase infection rate. Comparing 

the result with selfish and malicious node, infection rate for 

selfish has increase to from 0.5 with 2m/s to 0.7 with 20m/s. 

To explain this scenario, the fact that the faster a node moves, 

the sooner it will travels across boundary which results in 

node failure and decrease node time spent in the network. As 

for malicious node, increase in speed gives a chance to 

malicious node to infect neighboring nodes faster.  
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Fig. 10 Selfish and malicious node vs. mobility  

 

 

c) Initial Energy 

Nodes in MANETs rely on limited power resources to 

perform routing activity. To see the effect of initial energy, the 

second experiment with new initial power has been conducted 

with an increase from 100 Ws s to 200 W s. In Fig. 11, there is 

a slight increase of cooperative node in the network. This is 

5.3. Network Parameters Analysis 
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consistent with the intuition in [5] that a higher energy will 

increase node lifetime. Increase energy has lead to node acting 

cooperatively for longer period.  
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Fig. 11 The effect energy towards Susceptible Event   

 

 

However, the increase of energy actually prolonged the 

lifetime of malicious node and slightly reduces the correlated 

degree because of an increase in infection rate. This can be 

seen in Fig. 12, node with higher energy will remain in 

malicious state and continue spreading correlated event. This 

is dangerous situation as the node may impact network 

survivability severely. 

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

time (minutes)

N
u
m
b
e
r 
o
f 
N
o
d
e
s
 (
N
)

 

 

I
m
(t) 200Ws

I
m
(t) 100Ws

 
Fig. 12 The effect of energy to Infective Event (Malicious Node) 

 

An extensive simulation of epidemic spread to validate the 

correlated node behavior model and check with analytic 

results have been performed. Data from simulation is 

compared with Weibull distribution for analytical data. 

Weibull distribution is widely use in reliability engineering to 

model lifetime distribution.  is considered as selfish 

cumulative distribution function (cdf) and  is malicious 

distribution function (cdf). The Weibull function used in this 

paper is known as the two-parameter Weibull distribution, 

define as  
 

               (12)                                              

 

where  and  are usually called the slope (or shape) 

parameter and scale parameter, respectively. From simulation 

result, average transition from cooperative to selfish and from 

cooperative to malicious are   and , respectively. 

If let  and , then  and . 

From Fig. 13 and 14 clearly shows that Weibull function in 

equation (12) match with simulation results. The  plots 

show clearly how likely a node is surviving after a certain 

time. Further, the distribution can also be used to estimate the 

number of cooperative nodes. For example in Fig. 14, the 

probability that a node still in cooperative state within 50 

minutes is 0.1, which also implies that 90% of nodes will 

become selfish within 50 minutes if they are compromised. On 
the other hand, at about 50 minutes, 100% of nodes become 

malicious node and the entire network is compromised.  From 

the analysis, the spreading of correlated node behavior in 

malicious state is faster once more nodes are in infected state. 

Therefore, these accumulated malicious attacks may impact 

network connectivity severely and isolate more and more 

nodes. In the case of selfish node, the spreading time is less 

than malicious node; however, selfish node is capable to 

create severe network portioning due to node failure from 

energy depletion.   
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Fig. 13: Probability of nodes become selfish nodes               
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Fig. 14: Probability of nodes become malicious nodes 

 

5.4. Model Validation 
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In this paper, stochastic correlated node behavior model is 

studied which enable the efficient simulation of realistic 

scenarios of correlated node behavior for dynamic network 

topology in ad hoc networks. Then correlated degree is 

developed based on disease spreading in SIR model to capture 

the spread of correlated behavior. According to this model, a 

necessary condition for correlated behavior to spread in ad hoc 

networks is theoretically derived. Numerical analysis results 

are provided to demonstrate the validity of the model.  As 

future work, more other factors will be considered to measure 

the impact of the correlated behavior in these networks, such 

as security limitation. 
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